Nitric oxide synthase and NADPH diaphorase distribution in the bullfrog (Rana catesbeiana) CNS: pathways and functional implications.

نویسندگان

  • Phuong Huynh
  • Sunny K Boyd
چکیده

The gas nitric oxide (NO) is emerging as an important regulator of normal physiology and pathophysiology in the central nervous system (CNS). The distribution of cells releasing NO is poorly understood in non-mammalian vertebrates. Nitric oxide synthase immunocytochemistry (NOS ICC) was thus used to identify neuronal cells that contain the enzyme required for NO production in the amphibian brain and spinal cord. NADPH-diaphorase (NADPHd) histochemistry was also used because the presence of NADPHd serves as a reliable indicator of nitrergic cells. Both techniques revealed stained cells in all major structures and pathways in the bullfrog brain. Staining was identified in the olfactory glomeruli, pallium and subpallium of the telencephalon; epithalamus, thalamus, preoptic area, and hypothalamus of the diencephalon; pretectal area, optic tectum, torus semicircularis, and tegmentum of the mesencephalon; all layers of the cerebellum; reticular formation; nucleus of the solitary tract, octaval nuclei, and dorsal column nuclei of the medulla; and dorsal and motor fields of the spinal cord. In general, NADPHd histochemistry provided better staining quality, especially in subpallial regions, although NOS ICC tended to detect more cells in the olfactory bulb, pallium, ventromedial thalamus, and cerebellar Purkinje cell layer. NOS ICC was also more sensitive for motor neurons and consistently labeled them in the vagus nucleus and along the length of the rostral spinal cord. Thus, nitrergic cells were ubiquitously distributed throughout the bullfrog brain and likely serve an essential regulatory function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide synthase activity in the olfactory bulb of anuran and urodele amphibians.

Nitric oxide synthase activity was studied by means of NADPH-diaphorase activity and nitric oxide synthase immunoreactivity in the main and accessory olfactory bulbs of the frog Rana perezi and the newt Triturus marmoratus. In both species, NADPH-diaphorase staining was observed in all olfactory fibers. Vomeronasal fibers were NADPH-diaphorase-positive in Triturus but they were NADPH-diaphorase...

متن کامل

Nicotinomid Adenin Dinucleotide Phosphate-Diaphorase (NADPH-d) Activity and CB-28 kDa Immunoreactivity in Spinal Neurons of Neonatal Rats after a Peripheral Nerve Lesion

Our previous studies have shown that median and ulnar nerve lesion induced calbindin (CB) immunoreactivity in some injured motoneurons in developing rats. Motoneuron death induced by sciatic nerve transection in neonatal rats has been related to induction of neuronal isoform of nitric oxide synthase (nNOS). The present study investigated whether expression of CB and nicotinomid adenin dinucleot...

متن کامل

Nitric oxide modulates respiratory-related neural activity in the isolated brainstem of the bullfrog.

The effects of nitric oxide (NO) on respiratory-related neural activity were investigated using the isolated brainstem preparation from bullfrogs (Rana catesbeiana). Addition of the NO donor, sodium nitroprusside (SNP), or the amino acid precursor for NO synthesis, L-arginine (L-Arg), produced significant increases in respiratory-related burst frequency. Inhibition of nitric oxide synthase (NOS...

متن کامل

Nitric oxide as a modulator of central respiratory rhythm in the isolated brainstem of the bullfrog (Rana catesbeiana).

Nitric oxide (NO) is a unique interneuronal neurotransmitter and/or neuromodulator that is involved in a variety of physiological functions within the central nervous system (CNS). In neural tissue, NO is generated from an oxygen-dependent, constitutive NO synthase (NOS) by glutamatergic stimulation of N-methyl-D-aspartate (NMDA) receptors. Recent studies indicate that NO has excitatory effects...

متن کامل

Verifying of Participation of Nitric Oxide in Morphine Place Conditioning in the Rat Medial Septum Using Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase (NADPH-d)

Background: Role of nitric oxide (NO) in morphine-induced conditioned place preference (CPP) has already been proposed in the rat medial septum (MS), but no molecular evidence has been provided to clear this fact. Methods: Effects of intraseptal injections of L-arginine and/or NG-nitro-L-arginine methyl ester (L-NAME) on morphine place conditioning in Wistar rats were examined. Morphine (2.5-7....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain, behavior and evolution

دوره 70 3  شماره 

صفحات  -

تاریخ انتشار 2007